Mark scheme – Analytical Techniques

Qı	Questio n		Answer/Indicative content	Marks	Guidance
1			C=C/alkene peak in region 1620-1680 cm ⁻¹ $√$ O–H/alcohol peak in region 3200-3600 cm ⁻¹ $√$	2 (AO3.2× 2)	LOOK ON THE SPECTRUM for labelled peaks which can be given credit IGNORE references to C-O at 1000cm ⁻¹
			Total	2	
2			 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) The candidate gives thorough explanations of both spectra, and correctly identifies X and Y with a correct equation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND Attempts a feasible structure based on deduction from correct <i>M</i>. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1–2 marks) The candidate gives a simple description based on at least two of the main scientific points. OR Gives a thorough description and explanation of one of the scientific points. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6 (AO2.5× 1) (AO3.1× 2) (AO3.2× 3)	Indicative scientific points LOOK AT THE SPECTRA for labelled peaks Mass Spectrum • M ⁺ or molecular ion of 86 • m/z = 43 shows CH ₃ CO ⁺ OR C ₃ H7 ⁺ IR Spectrum • IR shows no broad absorption at 2500–3300 cm ⁻¹ so no O–H bond AND not a carboxylic acid • IR shows absorption at 1700 cm ⁻¹ for C=O bond OR indicates a ketone/aldehyde present Identification and Equation • X must be a secondary alcohol, since refluxing a secondary alcohol with acidified potassium dichromate (VI) forms a ketone OR primary alcohol → carboxylic acid AND tertiary alcohol would not be oxidised. • X is (CH ₃) ₂ CHCHOHCH ₃ OR 3- methylbutan-2-oi • Y is (CH ₃) ₂ CHCOCH ₃ OR 3- methylbutan-2-one

					 * This was a challenging problem- solving question, relying on candidates to make use of all of the information provided to determine the structure. Very few candidates made no attempt at all at this question. The most common error was incorrectly identifying the peak at 3000 cm⁻¹ as O- H from a carboxylic acid, despite it being indicated on the data sheet that this would be a broad peak. It suggested that candidates were not familiar with looking at spectra and understanding what data it gave. Candidates should also be reminded when answering these types of question that they should give the structures, not just molecular formulae, where possible.
			Total	6	
3	а	i	Molecular mass √	1(AO1.1)	IGNORE 'relative' IGNORE 'molecular ion' alone, answer must relate to mass ALLOW <i>M</i> _r / molar mass <u>Examiner's Comments</u> This was generally well answered. The most common incorrect answer was atomic mass.
		ï	Y: CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ ⁺ √ Z: CH ₃ CH ₂ CH ₂ ⁺ √ <i>If positive charge is missing but the structures of</i> Y <i>AND Z are correct, award one mark</i>	2(AO3.2 ×2)	FOR ONE MARK ALLOW C ₅ H ₁₁ ⁺ AND C ₃ H ₇ ⁺ ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner's Comments Most students gained one mark on this question as they omitted the + sign or wrote the molecular formula instead of the structural formula.
	b	i	$H = \begin{bmatrix} H & H & H & H \\ H & -H_3 & H & H \\ H & -C & -C & -C & -C & -H \\ H & -L & -L & -H \\ H & -L & -H & -F \\ H & -L & -H & -F \\ H & -F & -F \\ H & -F & -F & -F \\ H & -F & -F \\ H & -F & -F & -F \\ H & -F & -F$	1(AO1.1)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner's Comments This was well answered by most candidates

	ii	Similarity Both have a peak at (<i>m</i> / <i>z</i> =) 198 (X) OR 71 (Y) OR 29 √ Difference 2-iodo-2-methylbutane has no peak at (<i>m</i> / <i>z</i> =) 43 (Z) √	2(AO3.2 ×2)	ALLOW same molecular ion peak / M_r IGNORE statements where no specific ion peak is suggested e.g. "different ion peaks" Examiner's Comments Most candidates answered the similarity part correctly, many wrote vague answers to the difference and were not specific. A common error focused on the peak at m/z = 71, very few recognised that the Z peak at 43 would not be present for 2-iodo-2- methylbutane
		Total	6	
4	i	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrows 2 marks curly arrow from OH- to C atom of C-Br bond \checkmark dipole shown on C-Br bond, C ⁵⁺ and Br ⁵⁻ , AND curly arrow from C-Br bond to Br atom $C_2H_3 - C_2H_3 -$	3	1st curly arrow must • go to the C of C–Br AND • start from, OR be traced back to any point across width of lone pair on O of OH ⁻ $(:\overline{OH} : \overline{OH} : OH^{-} : OH^{-} : \overline{OH} : \overline{OH}^{-} : $

Use curly arrow criteria in guidance above

Examiner's Comments

As with 25(a)(i), this question rewarded the well-prepared candidate. The large number of proposed mechanisms showed little resemblance to the accepted mechanism for nucleophilic substitution. Mechanisms were often seen showing curly arrows going in the wrong direction and between the wrong bonds and atoms, charges and dipoles were often incorrect, and partial changes used where full charges were required.

Two exemplars are shown. The first exemplar shows clear curly arrows, the role of the lone pair and all charges correct. The second exemplar shows a typical muddled response. Although the curly arrow from the hydroxide ion has been accurately drawn, the hydroxide ion has a partial charge rather than a charge. There is also no curly arrow showing breaking of the C–Br bond. The only mark available is for the correct organic product and a Br⁻ ion.

Some mechanisms were so poor that it was impossible to credit many candidates with any marks. Writing mechanisms is an important skill in organic chemistry and it is recommended that candidates learn and practice their writing.

Exemplar 7

of can be prepared by hydrolysing the ha C₂H_sCHBrCH₃ Aucleophilis Subshin Mart ALLOW value within range 500-800 cmcm⁻¹ ALLOW value within range 3200-3600 cmcm⁻¹ **DO NOT ALLOW** responses that only describe the spectrum shown Disappearance of peak at 500-800 cm⁻¹ OR C–Br peak √ **Examiner's Comments** ii 2 Appearance of This part discriminated very well with able candidates identifying that the peak at 3200-3600 cm⁻¹ OR alcohol O–H peak absorption for the C-Br bond would disappear, with a new peak appearing for the alcohol O–H bond. A significant number of candidates did not seem to understand what was required, with many interpreting the spectrum as that of the alcohol, rather than predicting how the spectrum would change during the reaction. A common error was to interpret the absorption for a C-H bond at ~3000 cm⁻¹ as that of an O–H bond. Total 5 LOOK AT THE SPECTRA for labelled Please refer to the marking instructions on page 5 of the mark peaks scheme for guidance on how to mark this question. Indicative scientific points may include: Level 3 (5-6 marks) A comprehensive description including most of the evidence to **Empirical formula** justify the correct structure of F (accept cis or trans). There is a well-developed line of reasoning which is clear and empirical formula = C_4H_6O logically structured. The information presented is relevant and 5 6 substantiated. % mass ratio 68.6 5.72 8.6 8.60 Level 2 (3-4 marks) The candidate attempts all three scientific points, but explanations are incomplete. IR and spectra and molecular OR formula Explains two scientific points thoroughly with few omissions. AND infrared absorption; 1630-1820 an attempt at a feasible structure based on deduction from cm⁻¹, due to C=O

(aldehyde/ketone/carbonyl group)

- molar mass = 70 g mol⁻¹ (mass spectrum molecular ion peak m/z = 70)
- molecular formula = C₄H₆O

Functional groups, structure and stereochemistry

- alkene / C=C
- aldehyde / −CHO (C₃H₅⁺ fragment)
- mass spectrum; peak at 41 due to C₃H₅⁺ (loss of CHO)
- *E/Z or cis-trans* isomer: *E/Z or cis-trans* isomer:

Examiner's Comments

This question was a good discriminator. Most candidates were able to deduce the empirical formula and the C=O peak on the IR spectrum. However, many mistook the C-H peaks around 3000 cm⁻¹ for an alcohol O-H peak or assumed from the empirical formula that it was an alcohol so made the spectra 'fit' their hypothesis. At AS, the exposure of candidates to IR and spectra is not as comprehensive as in the second year of A Level and this was evident. There was very little annotation of the spectra and candidates should be encouraged to do this as it is helpful to them in their deductions (and to the examiners for crediting marks). Analysis of the IR spectrum was much more detailed than the mass spectrum. Most candidates just referred to the molecular ion peak and made no attempt, or an incorrect attempt, at discerning the peak at 41. Those that did quickly realised what the structure was and gained 5 or 6 marks. Some candidates, despite ascertaining that a trans stereoisomer should be drawn,

Total

drew the <i>cis</i> version instead.
Exemplar 5
In the mass sporture, the peak with the greatest relative intensity is caused by the loss functional group from the molecular ion of compound F.
Determine the structure of compound F. H H H H H H C - C = C C = C - C - C H H H
Explain your reasoning and show your working. O
$\frac{C:H:O}{12} = \frac{63.6}{12} : \frac{S:6}{12} : \frac{22.8}{16}$
= 5.76: 8.6 ; 1-425
= 4-011: 6-03: 1
Empirical formula of compound F is C4H60.
The M+ peak on mass spectrum. But an mit value of
So the malecular formula of compound F is C4H60.
The infrared spectrum shows an absorbance peak to it
the range 1630-1820cm-1, indicating the presence of
a C=O band. There is no absorbance peak in the range
13 not a carboxulic acid composition as spectrum
shous a foginentation peak at 41 m/z, indicating th
presence of a CH3CHCH+ fragment from the lass of
a CHO functional group. Compound F is an aldehy
It is a trans to stereoisomer, so the hydrogens attached
to the carbons on the clouble bond are opposite each obh
н Н _44 ГЭ
н-с-с=с-с
і і т <i>ар</i> .∵ Н Н
This candidate has very logically
worked through all the information
provided and has come up with the
correct structure from the deductions.
correct structure from the deductions.
correct structure from the deductions.
Exemplar 6
Exemplar 6
correct structure from the deductions. Exemplar 6 Explain your reasoning and above your working. C. H. O. $\frac{C}{56} + \frac{1}{228}$ \overline{C} T. T. \overline{C} H. O. \overline{C}
correct structure from the deductions. Exemplar 6 Explain your massening and above your working. C H O 63.6 8.6 $22.8\overline{C} T \overline{16}\overline{C} \overline{C} \overline{1.4725}= 4.0$ 6.6 5.1
correct structure from the deductions. Exemplar 6 Explain your reasoning and show your working. C H O $686 8 \cdot 6 22.8$ $\overline{-} - 16$ $\overline{-} 5.7)(\overline{-} 8.6 ; 1.425$ = 4.0 ; 6.0 ; 1 cmpirical formula = $\ell_4 H_6 O$.
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your reasoning and show your working. C H O 536 8.6 $228-2$ -7 $-76= 5.716$ $: 8.6$ $: 1.0425= 4.0$ $: 6.0$ $: 1empirical formula = C_4 H6 O.Mr : (12.X4) + (6x1) + O(16) = -70$
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your reasoning and abovy your wooking. C. H. O. 68.6 8.6 $22.8\overline{-2} \overline{-1} \overline{-16}\overline{-5.7} 5.6 \vdots 1.425\overline{-4.0} \vdots 6.0 \vdots 1empirical formula = C_4 H6O.Mr. \circ(12.x4) + (6x1) + o(16) = -70F. mc = -70 \rightarrow mdecular formula = 6400$
correct structure from the deductions. Exemplar 6 Explain your reasoning and show your working. C. H. O. 636 8.6 $228\overline{-7} \overline{-7} \overline{-76}= 5.716^{\circ}; 8.6 : 1.4225= 4.0^{\circ}; 6.0^{\circ}; 1empirical formula = C_4 H6O.Mr. \circ(12 \times 1^{\circ}) + (6 \times 1) + o(16) = 70f. Mr. = 70 \rightarrow molecular formula = 640$
correct structure from the deductions. Exemplar 6 Explain your reasoning and show your working. C. H. O. 536 8.6 $228\overline{-} \overline{-} 16= 5.716$ $.86$ $: 1.4225= 4.0$ $.60$ $: 1empirical formula = C_4 H6O.Mr .(12x4) +(6x1) +@(16) = -70Empirical formula = 640mr = -70 \rightarrow molecular formula = 640pr = -70 \rightarrow molecular formula = 640$
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your reasoning and show your working. C. H. O. 536 8.6 $22.8\overline{-} \overline{-} \overline{-} \overline{-}5.716$ 3.66 $1.642.5= 4.03$ 6.03 $1empirical formula = 64.H_6.0M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 3(12 \times 14) + (6 \times 1) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} M_7 - 3(12 \times 14) + 0(16) = -70\overline{-} \overline{-} $
correct structure from the deductions. Exemplar 6 Explain your reasoning and show your working. C. H. O. (366, 8.6, 22.8) $\overline{-2}$ $\overline{-1}$ $\overline{16}$ $\overline{-5}$ $\overline{-16}$ $(3.6, 6.0; 1)$ $\overline{-5}$ $(12.24) + (6.0; 1)$ $\overline{-10}$ $(12.24) + (6.1) + (6.6) = -70$ $\overline{-10}$
correct structure from the deductions. Exemplar 6 Explain your massing and above your wooding. C H O 636 8.6 228 $\overline{-2}$ T 16 $\overline{-5}$ $\overline{-16}$ $\overline{-5}$ $\overline{-16}$
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your maching and show your working. C H O 536 8.6 228 $\overline{-2}$ T To $\overline{-576}$ 8.6 : 1.425 $\overline{-4.0}$ 6.0 : 1 empirical formula = C4 H6 O. Mr : (12x4) + (6x1) + @(16) = 70 $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ $\overline{-70}$ -70
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your maching and show your working. C H O 536 8.6 228 $\overline{2}$ T To $\overline{536}$ 8.6 : 1.425 $\overline{2}$ 4.0 : 6.0 : 1 empirical formula = C4 H6 O. Mr : (12 x4) + (6x1) + @(16) = 70 $\overline{1}$ mr = 70 \rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 $\overline{1}$ mr = 70 \rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 $\overline{1}$ mr = 70 \rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 $\overline{1}$ mr = 70 \rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 $\overline{1}$ mr = 70 \rightarrow molecular formula = 646 $\overline{1}$ mr = 70 \rightarrow molecular formula = 70 \rightarrow molecular for
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your matching and show your working. C H O 536 8.6 228 T T6 = 5.716 : 8.6 : 1.425 = 4.0 : 6.0 : 1 empirical formula = C4 H6.0. Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (6x1) + @(16) = 70 F Mr = 70 \Rightarrow molecular fairmula = 646 Peak at 41 \Rightarrow H2 = 0 H2 0 = 0 H2 0 F Mr = 70 \Rightarrow molecular fairmula = 646 Mr : (12.X4) + (12.X4)
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your reasoning and show your working. C H O 536 8.6 228 T T6 = 5.716 . 8.6 : 1.425 = 4.0 ° 6.0 : 1 emprical formula = C4 H6.0. Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (6x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (16 x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (16 x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (16 x1) + @(16) = 70 E Mc = 70 \Rightarrow molecular formula = 646 Mr : (12 x4) + (16 x1) + @(16) = 70 E Mr : (12 x4) + (16 x1) + @(16) = 70 E Mr : (12 x4) + (16 x1) + @(16) = 70 E Mr : (12 x4) + (16 x1) + @(16) = 70
correct structure from the deductions. Exemplar 6 Explain your reasoning and above your working. $\frac{C}{36} + \frac{H}{9} + \frac{O}{16}$ $= \frac{1}{57} + \frac{1}{16} + \frac{1}{16$
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your massing and above your wooking. C. H. O. 536 8.6 $228=$ $ 16=$ 5.716 $:$ 8.6 $:$ $1.4225=$ 4.0 $:$ 6.0 $:$ $1empirical formula = C_4 H6 O.Mr : (12x4) + (6x1) + 0(16) = -70E mc = -70 \Rightarrow molecular formula = 646Me : (12x4) + (6x1) + 0(16) = -70E mc = -70 \Rightarrow molecular formula = 646Peak at 29^{2} \Rightarrow CHD O=CH / mass Speen Peak at 41 \Rightarrow H6C = CH_2 CH2 SIR Spectrum \Rightarrow Peak at 1630-1820/indicatesthe presence of a c=0 graup\Rightarrow Peak at 620 \Rightarrow 1630 $
correct structure from the deductions. Exemplar 6 Exemplar 6 Explain your maximing and above your wooding. C. H. O. 586 8.6 $228=$ $ 16=$ 5.716 8.6 $1.425=$ 4.0 6.6 $1empirical formula = 64 H6O.Mr : (12x4) + (6x1) + 0(6) = -70E. Mr = -70 \Rightarrow molecular formula = 646Mr = -70 \Rightarrow molecular formula = 646egk42.97 \Rightarrow 0.000 0.000 H_{100} mass spearPlack at 41 \Rightarrow H_{2}C = 0.000 R_{2}H_{2} for C = 0 for PR Spectrum \Rightarrow Plack at 1630-1820 minimizatesH_{2} Plack at 610 \Rightarrow 1630-1820 minimizatesH_{2} Plack at 610 \Rightarrow 1630-1820 minimizatesH_{2} Place at 620 \Rightarrow 1630-1820 minimizatesH_{2} Place at 620 \Rightarrow 1630 minimizatesH_{2} Place at 1600 \Rightarrow 1630 minimizatesH_{2} Place at 1600 \Rightarrow 1630 minimizatesH_{2} Place at 1600 \Rightarrow 1630 minimizatesH_{3} Place at 1600 \Rightarrow 1630 minimizatesH_{3} Place H_{3} Place H$
correct structure from the deductions. Exemplar 6 Exemplar 6 E
provided and not come up with the correct structure from the deductions. Exemplar 6 Exemplar 6 Exe

6

4.2.4 Analytical Techniques

6		i	$ \begin{array}{c c} H & OH \\ \hline H & H \\ \hline C & C \\ \hline H & H \\ \hline H & H \\ \end{array} _{n(1)}^{n} $	1	
		ii	Evidence against ethenol: No infrared absorption between 3200 and 3600 cm ⁻¹ from O–H (1)	4	
		ï	Evidence for isomer: Infrared absorption between 1640 and 1750 cm ⁻¹ indicates C=O (1) Mass spectrum: fragmentation peak at $m/z = 29$ suggests CHO ⁺ OR fragmentation peak at $m/z = 15$ suggests CH ₃ (1) Identification: Ethanal / CH ₃ CHO (1)		ignore molecular ion peak at <i>m/z</i> confirms molecular mass of 44 g mol ⁻¹
			Total	5	
7			It increases / causes / contributes to global warming OR C–H bonds vibrate OR absorb IR √	1	ALLOW it is a greenhouse gas / increases temp IGNORE ozone, radicals OR acid rain Examiner's Comment: Most candidates were awarded this straightforward mark for stating that methane is a greenhouse gas. A common error was depletion of the ozone layer.
			Total	1	
8	а		Empirical / molecular formula 3 marks Mole ratio C : H : Br is 2.44 : 5.70 : 0.814 \checkmark (Empirical formula) = C ₃ H ₇ Br \checkmark QWC (Molecular formula) = C ₃ H ₇ Br AND relative mass linked to 150 evidence \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $\frac{29.29}{12.0}:\frac{5.70}{1.0}:\frac{65.01}{79.9}$ Evidence could include a calculation of the relative mass of C ₃ H ₇ Br as 122.9 linking to <i>M</i> _r being less than 150 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the
			Structural isomers2 marksCH3CH2CH2Br ✓CH3CHBrCH3 ✓		above (as long as unambiguous) DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in

				subsequent structure
				Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for advice on how to mark the subsequent parts of this question
				Examiner's Comments
				Calculation of empirical formula has always been a strength of candidates at this level. Consequently the vast majority were able to deduce the structures of the two isomers correctly. A significant number of candidates failed to secure full marks as they did not link the M _r of the empirical formula with the information about the M _r of the isomers being less than 150. Some candidates tried to use the value of 150 to determine the formula of C and D , ultimately ending up with an incorrect answer. However, error carried forward marks were allowed through subsequent parts of this question where appropriate.
				ANNOTATE ANSWER WITH TICKS AND CROSSES
b	i	Infrared for G 2 marks	6	LOOK ON THE SPECTRUM for labelled peaks which can be given credit
		1700 cm ⁻¹ AND C=O/carbonyl group √ (broad) 2300–3600 cm ⁻¹ AND O–H in carboxylic acid √		ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O-H within range 2500–3300 cm ⁻¹
		Structures 3 marks		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
	i	CH ₃ CH ₂ CH ₂ OH √		ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid
		CH₃CHOHCH₃ ✓		IGNORE names
		CH ₃ CH ₂ COOH √		IGNORE labels
				DO NOT ALLOW missing H atom(s) in a displayed formula for one structure

ALLOW correct structural OR disp. OR skeletal formula OR mixture of above in equation Equation for formation of G 1 mark i Candidates were well prepared for structural determination question a examiners were encouraged by the number of high quality of response this question. Most candidates were able interpret the key packs in the is spectrum and identified the O-H bo a carboxylic acid and C-O bord accurately. Most candidates dentifi all three structures correctly. Only 1 strongest responses fail include 1 and C-O bord accurately. Most candidates included a correct extructural or of G by oxidation of E. Many responses fail include this and others often had H the inorgenic product. Candidates are that incorrect equations are frequently seen in responses to ext questions. 2 marks for correct ester. iii 2 iii 2 Award 1 mark for: CH ₂ CH ₂ COOCH ₂ CH ₂ CH ₃ iii Award 1 mark for: CH ₂ CH ₂ COOCH ₂ CH ₂ CH ₃ Most candidates were able to show structure of the stere formed from propandic acid (G and propan-2-d) correct, Seme candidate user in carect alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol, propan-1-d) (E) a such responses reacived only on correct alcohol				but ALLOW missing H atoms in subsequent structures
Image: Construction of the star for: CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ ANNOTATE ANSWER WITH TICH AND CROSSES Image: CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ ALLOW correct structural OR displication of above (as long as unambiguous) Image: CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ ALLOW C ₂ H ₅ CO ₂ CH(CH ₃) ₂ Image: CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ IF there is one bond and its H misss from the correct ester award 1 mark for: CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ 2 Image: CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ Most candidates were able to show structure of the ester formed from propanoic acid (G and propan-2-ol correctly. Some candidates used the incorrect alcohol, propan-1-ol (E) as such responses received only one structure of the star structure of the star formation of the star formatio of the star formation of the star formation	i	Equation for formation of G 1 mark $C_3H_8O + 2[O] \rightarrow C_3H_6O_2 + H_2O \checkmark$		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above in equation Examiner's Comments Candidates were well prepared for a structural determination question and examiners were encouraged by the number of high quality of responses to this question. Most candidates were able interpret the key peaks in the IR spectrum and identified the O-H bond of a carboxylic acid and C=O bond accurately. Most candidates identified all three structures correctly. Only the strongest responses included a correct equation for the formation of G by oxidation of E . Many responses failed to include this and others often had H ₂ as the inorganic product. Candidates are advised to revise oxidation reactions of alcohols thoroughly as it is often the case that incorrect equations are frequently seen in responses to exam questions.
Total 13		2 marks for correct ester. CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ Award 1 mark for: CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ OR Ambiguous ester: CH ₃ CH ₂ COOC ₃ H ₇ √	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW C ₂ H ₅ CO ₂ CH(CH ₃) ₂ IF there is one bond and its H missing from the correct ester award 1 mark Examiner's Comments Most candidates were able to show the structure of the ester formed from propanoic acid (G and propan-2-ol (F) correctly. Some candidates used the incorrect alcohol, propan-1-ol (E) and such responses received only one of the two marks available.

9 i	Evidence that 84 (M ⁺ peak) = 6×14 (mass of CH ₂) \checkmark e.g. $\frac{84}{14} = 6$	1	IGNORE use of molecular formula e.g (6×12) + (12×1) = 84 (use of empirical formula required) Examiner's Comments This question required candidates to use the m/z value for the molecular ion peak and the mass of the empirical formula to confirm the molecular formula of the alkene as C ₆ H ₁₂ . The most common method employed was to divide 84 by 14 to show that the molecular formula contained 6 empirical formula units. Although many candidates scored this mark, a significant proportion neglected to use the empirical formula and simply showed that the Mr of C ₆ H ₁₂ was equal to 84. Candidates should be encouraged to take note of all the supplementary information provided with a question, as it is likely to be required in the response.
ii	Structures of species 2 marks peak I CH₃CH=CH √ peak II CH₃CH=CHCH₂CH₂ OR CH=CHCH₂CH₂CH₃ √ + charge on BOTH CORRECT species 1 mark CH₃CH=CH ⁺ AND CH₃CH=CHCH₂CH₂ ⁺ √ peak I peak I	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW 1 mark if both correct structures are shown but in the incorrect columns ALLOW 1 mark for both correct structures if one or both have an 'end bond' ALLOW 1 mark for BOTH molecular formulae correct C ₃ H ₅ AND Peak I ALLOW 'charge mark' for + charge on BOTH fragments with correct molecular formulae ALLOW 'charge mark' for + charge on BOTH CORRECT molecular formulae ALLOW + change anywhere in structures OR outside brackets Examiner's Comments

			were good, and the majority of candidates chose to show the fragments as displayed formulae. A common incorrect response for the fragment that gave rise to peak I was CH ₃ CH ₂ C. Some candidates failed to show the positive charge on each fragment, although this was less common than in previous sessions.
	Total	4	
			LOOK ON THE SPECTRA for labelled peaks. Indicative scientific points may include: 1. Molecular formula
	Please refer to marking instructions on page 4 of mark scheme		
	for guidance on how to mark this question.		Element % mass Ar moles ratio
	Level 3 (5–6 marks)		C 54.5 12 4.54 2
	A comprehensive description with all three scientific points		H 9.1 1 9.1 4
	explained thoroughly. C identified as a carboxylic acid containing four carbon atoms linked to the peak in the mass spectrum at 43.		O 36.4 16 2.28 1 • empirical formula = C ₂ H ₄ O
	The explanation makes use of all the evidence including the secondary carbocation in justifying the correct structure of C.		 molecular ion peak <i>m/z</i> or Mr = 88 molecular formula = C₄H₈O₂
1	Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete		2 Infrared spectrum
0	OR Explains two scientific points thoroughly with few omissions.	6	
	The analysis is clear and includes some interpretation o IR and		• peak at 2500-3500 (cm ⁻¹) is O–H
	peaks.		 peak at 1630-1820 (cm⁻¹) is C=O
	Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific		C is a carboxylic acid
	points. OR		ALLOW stated values within the ranges above
	Explains one scientific point thoroughly with few errors.		IGNORE references to C–O peaks
	The analysis is communicated in an unstructured way and includes interpretation of peaks from IR OR spectrum		3. Identifying the carboxylic acid
	0 marks – No response worthy of credit.		 (CH₃CH₂CH₂COOH OR (CH₃)₂CHCOOH) Mass spectrum peak at <i>m/z</i> = 43 = C₃H₇(⁺) secondary carbocation: CH₃C⁺HCH₃ compound C: (CH₃)₂CHCOOH

r	T	1			
					$H = \bigcup_{H}^{H_3} \bigcup_{H_4}^{H_3}$ IGNORE name of carboxylic acid if structure given Examiner's Comments The final question on the paper was a six mark level of response question which required candidates to identify a molecule from a range of data. Most candidates were able to process the percentage composition data to arrive at an empirical formula but less able candidates then failed to use the data from the mass spectrum to arrive at the molecular formula. Candidates were generally able to use the infrared spectrum to identify the presence of – OH and C=O and could link this to the carboxyl functional group. The best candidates were able to identify the peak in the mass spectrum at 43 and to link this to a C ₃ H ₇ + fragment which led to the assumption that the carboxylic acid was butanoic acid. Many outstanding candidates were able to discuss the peak at 43 being that of a branched chain secondary carbocation and linked this to the correct branched
					product. Some answers were unstructured and disorganised and candidates should be encouraged when analysing data to organise their answer
					sequentially and discuss each piece of data in turn.
			Total	6	
			Mole ratio C : H : O is 3.33 : 6.67 : 3.33 ✓		ALLOW $\frac{40.00}{12.0}$; $\frac{6.67}{1.0}$; $\frac{53.33}{16.0}$ ALLOW mass of C = 0.400 × 90 or 36 AND mass of H = 0.06677 × 90 or 6 AND mass of O = 0.5333 × 90 or 48
1 1	а		Empirical formula is CH ₂ O ✓ Molecular formula is C ₃ H ₆ O ₃	3	Examiner's Comments
			use of 90 OR 3 + 30 ✓		Almost all candidates were able to correctly calculate the empirical formula of L. Although the majority also deduced the correct molecular formula, not all included their working. A small, but significant, proportion of candidates

			omitted this part of the question. Candidates are advised to show all working when required.
	Evidence of carboxylic acid (1 mark) IR: 1550–1800 cm ⁻¹ AND C=O / carbonyl AND 2300–3700 cm ⁻¹ AND O−H in carboxylic acid ✓		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O–H within range 2500–3300 cm ⁻¹ (broad) O–H within range 3200–3550 cm ⁻¹ For ALL structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above
b	Evidence of alcohol(1mark)(broad) $3200-3700 \text{ cm}^{-1}$ linked to O-H in alcoholOR (is a primary) alcohol as oxidised (to a COOH)OR is an alcohol as it forms a carboxylic acidOR is an alcohol as water is eliminated. \checkmark Identifications(2 marks)L:HHOCHHHH	5	IGNORE names FOR M: ALLOW 1 mark for
	M: $HOOC - C - COOH$ HOOC - H \checkmark Equation (1 mark) C ₃ H ₆ O ₃ + 2[O] \rightarrow C ₃ H ₄ O ₄ + H ₂ O \checkmark		ноос—с́—соон√ AS ECF from L as either H O H H H O H H H O H H H H H H H H H OR H
			Equation: $C_3H_6O_3 + 4[O] \rightarrow C_3H_2O_5 + 2H_2O \checkmark$ ALLOW correct structural OR displayed

		$ \begin{array}{c c} H & COOH \\ & \\ -c - c - \\ & \\ H & H \\ n \end{array} $		units ALLOW repeat unit with no brackets and absence of <i>n</i>
		Repeat units (1 mark) n = 10000/72 = 139 √		MUST be a whole number. ALLOW 138 OR 140
		Equation (1 mark) Balanced equation for formation of P from $\mathbf{N}\mathbf{J}$ e.g. $\mathbf{n} \rightarrow \mathbf{c} = \mathbf{c} \rightarrow \mathbf$		For equation, ALLOW molecular OR structural OR skeletal OR displayed formulae OR mixture of the above e.g. ALLOW $nC_3H_4O_2 \rightarrow (C_3H_4O_2)_n$ n on LHS can be at any height to the left of formula AND n on the RHS must be a subscript (essentially below the side link if displayed / skeletal formula is used) ALLOW use of calculated value for n in equation e.g. 139C ₃ H ₄ O ₂ \rightarrow (C ₃ H ₄ O ₂) ₁₃₉ Examiner's Comments This was a very demanding question and the strongest candidates were able to identify both N and P in addition to calculating the number of repeat units the polymer. However, not all included the polymerisation equation. Some candidates who were unable to deduce a correct structure for L in part (b) approached this part as a 'fresh start'. Using both the molecular formula from (a) and the information in the flowchart worked out the molecular formula of N and built a response from there.
		Total	12	
1 2	а	QWC : Evidence of the IR absorption at 1720 (cm ⁻¹) for presence of C=O / carbonyl group ✓	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at ~ 1720 (cm ⁻¹) AND C=O required

				suggested. Some candidates incorrectly identified the C—H peak in the spectrum as an O—H and suggested that K was a carboxylic acid.
				IF diagram is not labelled ALLOW Hydrogen bonds / H bonds from text
		Labelled diagram showing at least one H-bond between alcohol molecule and water \checkmark e.g. Hydrogen bond $H_{3}C \xrightarrow{H}_{CH_{3}} \xrightarrow{H}_{CH_{3}} \xrightarrow{(\delta+)H} \xrightarrow{(\delta-)O \longrightarrow H}$	1	Diagram should include role of an O lone pair and dipole charges on each end of H bond.
				IGNORE alcohol R group, even if wrong
	b			ALLOW structural OR displayed OR skeletal formula OR mixture of the above
				Examiner's Comments
				The majority of candidates were able to draw a diagram to show the hydrogen bond between an alcohol and water. However, a significant proportion lacked the accuracy required at this level and failed to show the role of the lone pair. It was also common to see responses that omitted the relevant dipoles. The question asked for the inclusion of
				relevant dipoles and lone pairs and candidates are advised to double check diagrams to ensure these key features are not neglected.
		Total	7	relevant dipoles and lone pairs and candidates are advised to double check diagrams to ensure these key features are not neglected.

					subject of their statement and avoid the use of words such as 'they' and 'it' in their responses.
				2	ALLOW 1 mark for C/ ₃ C AND CF ₂ C/ <i>i.e. no</i> + <i>charge used</i>
					ALLOW 1 mark for C/₃C [−] AND CF₂C/ [−]
		ii			i.e. — charge used on both
			C/₃C ⁺ ✓ CF ₂ C/ ⁺ ✓		Examiner's Comments
					The majorly of candidates identified the formulae of the two ions, although not all candidates specified the correct charge. Candidates should be aware that fragmentation in a mass spectrometer produces positive ions.
			Total	3	
1 4			Carboxylic acids have a broad O−H absorption at 2500−3300 (cm ⁻¹) (which ketones do not)	1	
			Total	1	
			Molecular formula for G: 2 marks		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Mole ratio C : H : O = $\frac{55.8}{12.0} \cdot \frac{7.0}{1.0} \cdot \frac{37.2}{16.0}$		ALLOW mass of C = 0.558 × 86 or 48 AND mass of H = 0.07 × 86 or 6 AND mass of O = 0.372 x 86 = 32
			OR 4.65 : 7.0 : 2.33 / 2.325 OR 2 : 3 : 1 OR C ₂ H ₃ O \checkmark Molecular formula of G C ₄ H ₆ O ₂ \checkmark		
1 5			Mass spectrum for G: 2 marks		+ charge required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge
			Peak X or peak 41 indicates C₃H₅⁺ ✓		ALLOW any possible fragments that
			Peak Y or peak 45 indicates COOH⁺ √		correct mass. E.g. Peak X indicates C_2OH^+ , Peak Y indicates $C_2H_5O^+$ Unfeasible fragments are not allowed e.g. $C_3H_9^+$ (too many H atoms)
			Infrared for G: 1 marks		LOOK ON THE SPECTRUM for labelled absorbance which can be given credit Candidates must link absorbance to
					bond in order to gain the mark

ALLOW 1700 cm⁻¹

For 2500–3300 cm⁻¹, **ALLOW** 2900 cm⁻¹ or any stated wavenumber with range 2500–3300 cm⁻¹ **ALLOW** wavenumber range up to 2400–3500 cm⁻¹

ALLOW structural, skeletal or displayed formula.

DO NOT ALLOW ECF from incorrect molecular formula

Examiner's Comments

This question allowed the candidates to demonstrate their understanding of the more complex aspects of the course and use their problem-solving skills to tie together the all of the evidence.

The calculation of the empirical formula was completed well and most candidates were able to determine the molecular formula of **G**.

Many of the more able candidates were able to identify one, if not both, of the ions responsible for peaks **X** and **Y** in the mass spectrum. A number of candidates were able to show correct fragments but omitted the positive charge. Candidates should be reminded to include the correct charge when suggesting particles responsible for peaks in mass spectra.

The majority of candidates were able to recognise the characteristic absorptions in the IR spectrum. The strongest responses attributed these peaks to the appropriate bonds and deduced that **G** was a carboxylic acid.

Two marks were available for the structure of **G**. The most able candidates were able to interpret all the information and provide the correct branched carboxylic acid. Some candidates recognised that the number of hydrogen atoms present suggested the presence of a carbon- carbon double bond, but suggested a straight

								chain compound. Other candidates provided a cyclic carboxylic acid. These two approaches were awarded one mark. The most common incorrect structure seen for G was butanoic acid.
			Total				7	
1 6			Total Use of elemental analysis data \Box C H O $\%$ 46.1 7.7 46.2 mol 3.84 7.7 2.89 ratio 1.33 2.66 1 atom ratio with calculation empirical formula = C ₄ H ₈ O ₃ 1 1 <i>IR spectrum</i> (very) broad absorption 2500–3300 cm ⁻¹ (COOH) AND absorption 1640–1750 cm ⁻¹ (C=O) absorption 3450 cm ⁻¹ (alcohol –OH) Identification Identification conclusion from data: compound contains –COOH and –OH (empirical formula confirms no other C=O than in COOH) in place of the previous chlorine-containing groups			5	ALLOW any values given within ranges given on Data Sheet ALLOW correct structural OR displayed OR skeletal formulae OR a combination	
			Total				5	
1 7			 * Please refer to the marking instruction point 10 for guidance on how to mark this question. (Level 3) Candidate provides a method for identifying the alcohols AND provides all supporting evidence from IR spectrum AND gives details of reagents and conditions and correct equations. The explanation is detailed and well structured. The information is clearly supported by details of reactions and ovidence of 					Indicative scientific points may include Identification of alcohols Based on recognition of alcohols as primary, secondary and tertiary (stated or implied by method). Basic procedure involves reflux followed by use of IR to identify different oxidation products. Reactions
			oxidation product. (5–6 marks)					 stated reagents (H⁺/Cr₂O₇²⁻ and conditions (reflux))

	(Level 2) Candidate provides a basic method AND provides some supporting evidence from IR spectrum AND gives details of reagents and conditions with some attempt at equations. The explanation has some structure. The information is supported by some details of reactions and evidence from IR spectrum. (3–4 marks) (Level 1) Candidate attempts to describe a basic method AND gives some supporting evidence from IR spectrum OR details of reagents and conditions with some attempt at equations. The explanation is basic and lacks structure. The information is supported by limited evidence from the reactions and oxidation products and would not lead to identification. (1–2 marks) No response or no response worthy of credit.		 equations using [O] including structural formulae CH₃CH₂CHOHCH₃ + [o] → CH₃CH₂COCH₃ + H₂0 CH₃CH₂CH₂CH₂OH + 2[o] → CH₃CH₂CH₂COOH + H₂o Identification of oxidation product IR: carboxylic acid from broad OH absorption and C=O IR: carbonyl / ketone from C=O and no OH tertiary alcohol from lack of C=O and OH peak in IR OR no colour change in reflux.
	Total	6	
1 8	$I = C_{4}H_{10}^{+} (1)$ $II = C_{3}H_{7}^{+} (1)$ $III = C_{2}H_{5}^{+} (1)$ $C_{3}H_{7}^{+} could be CH_{3}CH_{2}CH_{2}^{+} or CH_{3}CHCH_{3}^{+}$ OR $C_{3}H_{7}^{+} could be from CH_{3}CH_{2}CH_{2}CH_{3} or CH_{3}CH(CH_{3})_{2} (1)$ $CH_{3}CH_{2}^{+} could only be from CH_{3}CH_{2}CH_{2}CH_{3} (1)$	5	THROUGHOUT: if any charge is missing, do not allow 1st formula but allow subsequent formulae by ecf allow + charge anywhere
	Total	5	
1 9	(broad) peak at 3300–3600 (cm ⁻¹) for O–H (therefore A or C) (1) molar ratio: C : H : O $\frac{78.94}{12.0} : \frac{10.53}{1.0} : \frac{10.53}{16.0} \text{ OR } 6.58 : 10$	3	allow 3200–3600 cm ⁻¹ ignore references to the peak at ~2900 for C-H allow annotation of the spectrum to identify the bond responsible for the peak instead of quoting the wavenumber.

4.2.4 Analytical Techniques

			Conclusion may also follow from empirical formula followed by IR data.
	Total	3	